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I. Introduction 

In a recent couple of papers [la,  b] Gopinathan and Jug have discussed the 
valence index of an atom in a molecule, as it was defined in 1973 by Armstrong et 
al. [2] and, independently, by Borisova and Semenov [3]. (The basic idea traces 
back to Wiberg's classical paper [4].) The valence index discussed by these authors 
[ 1-3] is defined for the SCF wave functions, assuming the basis set being orthonor- 
mal, as is the case in the CNDO-type semiempirical theories; the generalization 
for ab initio (or EHT) wave functions has been recently given in [5-7]. (Another 
way of generalization [8, 9] which is based on L/Swdin-orthogonalization of the 
basis with a subsequent use of the formulae valid for the orthonormal basis, has 
been shown to be less adequate [10].) 

No doubt, Gopinathan and Jug [1] present some interesting details concerning 
the connection of valence indices with the "natural bond orbitals", as well as 
the results for some individual molecules may also be of interest. However, there 
are disputable points concerning Wiberg's bond indices, and especially, the 
simultaneous occurrence of the papers of Gopinathan and Jug [1] and of ours 
[5-7] can introduce a harmful confusion in the concepts and nomenclature 
concerning valence indices, especially for open-shell systems. In fact, Gopinathan 
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and Jug consider (see p. 500 in [1]) that the odd electron in a free radical does 
not contribute to the valence of the atom on which it is situated. This means, for 
instance, that they assume the carbon atom in the methyl radical to be (approxi- 
mately) three-valent; at the same time in Refs. [2, 5-7] it is assumed to have a 
valence of (about) four; as shown in [5-7], one may say that three of them are 
actually used in the bonds and one is free. (The latter approach is obviously 
much closer to the chemical intuition.) Accordingly, for open-shell systems indices 
of both total and free valences were introduced in [5-7]. Gopinathan and Jug 
[1] also use the term "free valence index" with the same notation as ours; however, 
they attribute a completely different meaning to it, not related to the unpaired 
electrons but expressing the deviation of the actual valence index from some 
idealized (reference) integer value. Accordingly, the "free valences" of 
Gopinathan and Jug [1] are also defined for closed-shell systems, in contrast to 
ours [5-7]. 

We feel rather uncomfortable about the same term "free valence" being attributed 
to completely different parameters. It may be of interest to note that Armstrong 
et al. [2] have already mentioned both these quantities (within the framework of 
the CNDO method) as possible measures of reactivity, but without attributing 
any specific name to either of them. 

Here we propose to use the term "free valence index" only for the difference 
between the total valence of an atom (as defined in accord with [2, 5-7]) and 
the sum of the bond orders formed by it, because this quantity can be expressed 
[7] (also see below) via the spin-density, i.e. reveals an intimate connection with 
the existence of some unsaturated valence in a free radical due to its unpaired 
spin. At the same time, one may also attribute a specific term to the quantity 
discussed by Gopinathan and Jug [1]; one can propose e.g. "excess valence" or 
"valence defect",  maybe both, depending on the sign of the difference between 
the actual and nominal (reference) valence values. 

The aim of  the present note is partly to comment on some points in Ref. [1], but 
mainly to discuss in some detail the basic formulae [2-7] for bond orders and 
valences, by the use of which these parameters can actually be calculated from 
the SCF wave functions. These quantities can provide useful information of direct 
chemical character concerning the systems studied. The formulae will be given 
for both general (non-orthogonal; ab initio, EHT) and orthonormal (CNDO etc.) 
basis sets. The presentation will be based on the relationships we obtained most 
recently between the bond order and valence indices from one hand and the 
second order density matrix from the other. 

2. The bond order and valence indices 

We shall first introduce the spinless LCAO "density matrix" P and spin-density 
matrix ps, defined as 

P = P ~ + P ~ ;  (1) 
p~ = po~ _ p~, 
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with 
n 

P ~ =  ~ ~ ~, c,  c ,  , (2)  
i = 1  

where c~ is the column-vector of  the i-th MO of spin o-(o- = a or/3)  of  the single 
determinant wave function, ? denotes the adjoint and n~ is the number  of  electrons 
with spin o-. Open-shell systems are treated at the U H F  level, while for closed-shell 
systems doubly filled (RHF) orbitals are used, i.e. c7 = c~ = c~; P~ =P~, so 
P = 2 ~ooo. c~c*~ and ps = O. 

Now, it is known [11] that the specific property of  the single determinant wave 
functions is that the second order density matrix Pz can be expressed in terms 
of the first order one p~: 

p2(1, 2; 1', 2') = pl(1 ; l ' )p , (2;  2 ' ) -p~(2 ;  l ' )p,(1 ; 2'). (3) 

The first term in the right-hand-side of  (3) is related to the Coulombic,  the second 
to the exchange part of  the electron-electron repulsion energy. 

The exchange part  of  the second order density matrix is normalized (cf. [11]) as 

N=ffpt(2;1)pl(1;2)d'r~d'r2 (4) 

N being the number  of  electrons, and the integrations include summations over 
spins. Substituting the LCAO expression of the first order density matrix p~ into 
(4) we obtain this normalization after some algebra in the form 

N =�89 ~ [(PS).~(PS)~g +(PsS)~ (PSS)~ . ]  
A p,, v~  A 

+ ~ ~ ~ [(PS),~,,(PS)~,~+(P~S),~,(P~S),,~]. (5) 
A < B  p . E A  v ~ B  

Here S is the overlap matrix of  the basis and the notations l ike/z ~ A mean that 
the summations should be extended to all the basis orbitals centered on the given 
atom. The equality in (5) can be proven also based on the identity given in [7]: 
(PS)  2 = 2PS  - (P~S) 2. 

The bond order between atoms A and B is defined ~ as the diatomic contribution 
to the right-hand-side of  (5): 

BAB = ~" ~ [ (PS ) .~ (PS)~+(P 'S ) .~ (P~S)~ . ] .  (6) 
/ * c A  v ~ B  

I f  the basis is orthonormalized, then matrix S is the unity matrix, and the bond 
order index (6) becomes identical to Wiberg's bond index [4] proposed originally 
in the f ramework of the C N D O  theory; admitting also open-shell systems it can 
he written as 

WAB = Z Z (IP~12+IP~I2). (7) 
/ ~ r  v e B  

Following an idea in [8], we have introduced a minor improvement in the definition of bond 
orders and free valences for the open-shell case, as compared with [5, 6] 
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As noted in [5], both the bond order index BAB in the ab initio case and the 
Wiberg index in the CNDO one are closely related to the exchange part of the 
interaction between the atoms in question; in particular, the comparison with 
the CNDO energy partitioning scheme in [12] shows that ~exch 1 *JAB = --2'YAB WAB, 

uexch is the diatomic exchange energy component and ")/AB is the diatomic w h e r e  *-'AB 

Coulomb integral [cf. also Eq. (30) in Ref. 13]. 

It is repeatedly stated in Ref. [1] that Wiberg's bond indices are related to the 
case of a non-orthogonal basis (see, in particular, pp. 499 and 523). This is, 
however, not the case, as Wiberg [4] defined in the framework of the CNDO 
theory. The mistake in [1] is often recurring, and perhaps is connected with the 
specific handling of the overlap integrals in the CNDO method: at first one 
calculates explicitly the overlaps between the basis orbitals, but only for being 
used to parametrize the off-diagonal core matrix elements, and then the overlap 
integrals are omitted from any further consideration. Accordingly, the overlap 
matrix does not enter the normalization of the orbitals or the SCF equations [14]. 
(The assumption S~  -- ~ is the only one consistent with the ZDO approximation 
for the integrals.) 

The Wiberg index WAB is always positive; this is usually, but not necessarily, 
also the case for the general bond order index BAB. (Very small negative values 
have already been encountered [6].) The positiveness of the Wiberg index led to 
a mistake in [1] (it is also often recurring) that the Wiberg index would be 
"incapable of describing antibonding situation", being the measure of "total 
extent of electron pairing between the two given atoms" and would not, therefore, 
"a  measure of the difference: number of bonding [electron] pairs minus that of 
antibonding pairs" (see p. 523 in [1]). But this is usually not the case, because 
the difference between the number of bonding and antibonding orbitals is 
automatically accounted for when matrix P is formed from the orbital coefficients. 
So, it was proven by Borisova and Semenov [3] that the Wiberg index of 
homonuclear diatomics is just 

WA~=~(nb--no) (8) 

where nb and na are the number of occupied bonding and antibonding molecular 
spin-orbitals, respectively. Here we do not wish to repeat the derivation given in 
[3]; one can ascertain the correctness of this conclusion by recalling, e.g. that for 
systems like H2, N2, F2 and He2 the Wiberg indices are 1, 3, 1 and 0, respectively, 
in full agreement with the classical chemical notion of bond orders in these 
molecules 2 (also see [13]). 

2 Borisova and Semenov [3] derived Eq. (8) first in the form 

WAB = ~ n b + n o --2 min (rib, ha)]. (8a) 

Because, for ground state systems, n b >-- no, this equation reduces to (8). An interesting exception is 
C2 [15]; one can prove that for this molecule one of the conditions under which Borisova and 
Semenov performed their derivation is not fulfilled 
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In light of the above discussion I do not see a need for the introduction of the 
new ("projected") bond index proposed in [1], especially because no definite 
physical meaning can be attributed to it. 

Although the presence of the overlap integrals makes the derivations more 
complicated, exactly the same conclusions hold for the general bond order indices 
BAB defined in Eq. (6), in the case of homonuclear diatomics treated at the 
minimal basis ab initio (or EHT) level [5-7], as were discussed above for the 
Wiberg indices. So the bond orders quoted for H2, N2 etc. are again obtained. 
In particular, the bond order between two He atoms is zero. However, the 
Mulliken's overlap population, as it is easy to see, is negative in this case. This 
fact, perhaps, may be considered as an expression of the repulsive character of 
the interaction. One can, therefore, agree with the following reformulation of the 
statement quoted above: neither the bond order indices BAB in the general case, 
nor the Wiberg indices WAB in the case of an orthonormal basis set, can appropri- 
ately distinguish between the non-bonding (neutral) and antibonding (repulsive) 
situations occurring for chemically non-bonded atoms. 

For molecules more complicated than the homonuclear diatomics, the bond 
orders BAB (or WAB if the basis is orthonormalized) are influenced also by the 
factors like bond polarity and delocalization effects. Nonetheless, for pairs of 
chemically bonded atoms, they are usually close to the "classical" values of bond 
orders, and even the small variations may reflect well the changes in the bond 
strengths in series of related molecules. 3 

Concerning valences, one can observe that the terms in both sides of Eq. (5) 
giving the normalization of the exchange part of the second order density matrix 
can be grouped according to the individual atoms to yield 

l ,  QA=~ (PS).~(PS)~ + ~ ~ ~ [(PS).~(PS)~ 
l tx ,~,cA B(B~-A) p-~A z,~B 

+(P~S)~(P~S)~.]+ ~ (P~S)~(P~S)~{ (9) 
J 

where Q~=Y,~A (PS)~ is the electron population on atom A. (YA Q~= N.) 

By using Eq. (6) and introducing the appropriate notations VA and FA, Eq. (9) 
can be transformed to 

VA = E BAB+FA (10) 
B(B~A) 

where 

VA =2 Y~ (PSL. -  E (PS)~(es)~ (ll) 
~ A  tz,~'~A 

3 It was also possible to define [16] "partial Wiberg indices" as different (sp-sp, sp-d and d-d) 
components  of  a Wiberg index, by performing the summat ion  in Eq. (7) only for the orbitals of  the 
given type. These parameters were found to be useful for clarifying the role of  d-orbitals in forming 
the individual bonds of  a given molecule. Their generalization to the ab initio case seems also 
straightforward 
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is the total valence of atom A and 

FA = • (PsS).~(P~S)~. 
p.,vEA 

is its free valence. 

(12) 

If the basis is orthonormal, one has instead of (11) and (12) 

VA(Ort)=2 Z P , ~ -  2 IP,,~] 2 (13) 
/~ch tx,~cA 

and 

FA(ort)-- ~ IP~] 2 (14) 

while Eq. (I0) does not change. 

Obviously, the free valence index vanishes for closed-shell systems (ps = 0), so 
in their case the valence of the atom is equal to the sum of its bond orders: 

VA-- ~ BAB (closed shells) (15) 
B(B~A) 

and 

VA(ort) = ~ WAB (closed shells) (16) 
B(BT"A) 

for the case of general (non-orthogonal) and orthonormal basis sets, respectively. 
It is to be noted that the free valence index FA was originally defined [5] directly 
as the difference of the total valence of the atom and the sum of its bond orders; 
this type of definition also seems to be generalizable beyond the SCF level [17]. 

Following Wiberg [4], the physical meaning of these formulae can be summarized 
as follows. The quantity b. = 2q~.-(q~)2, q~ being the electron population of 
the/x-th basis orbital X., is a measure of the extent to which orbital X. participates 
in the bonding: on one hand b. has a maximum of 1 for an orbital occupied by 
one electron (as is the case if the orbital enters a pure covalent bond) and is 0 
for both an empty and a doubly filled (e.g. lone pair) orbital having no role in 
bonding. On the other hand, Wiberg [4] proved that for closed-shell systems and 
orthonormal basis sets b. is the sum of all the partial bond orders IP~l  2 formed 
by the given orbital: 

b,-- ~ IP.~I 2. (17) 

By summing the quantity b,. for all the orbitals of the atom A but subtracting 
the intra-atomic partial bond orders having no chemical significance, one arrives 
[2, 3] at the definition Eq. (13): 

VA(Ort)= ~ b ~ -  ~ ]P.~I 2. (lS) 
p.~A ,~,uEA 

Now, Eq. (11) can be considered as a generalization of this approach for the 
case of an overlapping basis [5]. (See [10] for a detailed discussion of some 
problems connected with such type of generalization.) 
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We shall note that the quantity }~i 2 2 2 n i % -  qa used in Ref. [1] is exactly the same 
as our b, for the closed-shell RHF wave functions, but it is not applicable in the 
UHF case. As we have already noted, this quantity is defined [1] in such a manner 
that for the single determinant open-shell RHF description of a free radical (the 
occupation numbers n~ equal 2 for all the molecular orbitals, except one having 
n~ = 1) the valence contribution of an odd electron fully localized on a single 
atomic orbital is zero. Our assumption that such an unpaired electron gives a 
contribution equal to unity to both the total and the free valence of the atom 
corresponds much better to the chemical picture. In the framework of the 
treatment of Ref. [1] there is no analogue for the free valence index, as it is 
defined above in accord with [5-7]. We shall emphasize once again that the 
quantity Gopinathan and Jug [1] call "free valence" (for which we have proposed 
above the term "excess valence" or "valence defect") is the difference WA--VA, 
V~ being the "reference" value for the atoms of given type, and has nothing in 
common with our FA. 

An important property of the bond order and valence indices is their rotational 
and hybridizational invariance; in particular, if the basis is orthonormalized (e.g. 
CNDO) and one turns to McWeeny's natural hybrid orbitals diagonalizing the 
intra-atomic block of the matrix P (i.e. P~,,~, = q~,~,,~, for t~', u'~ A), then one has 

VA(ort)= E b~,= E e e 2 [2q~,-- (q~,) ]. (19) 
/zlEA ttl~A 

This was first shown by Borisova and Semenov [3] and discussed also by 
Gopinathan and Jug [1]. 

Finally, we shall mention the following problem: all the different but equivalent 
formulae given for valences in Ref. [1] are valid only for orthonormal basis sets. 
As a consequence, the valences of the nitrogen and carbon atoms in the N2 and 
C2 molecules, respectively, quoted in Table 1 on p. 514 of Ref. [1] for the case 
of double and triple zeta ab initio bases, cannot be correct if were calculated by 
using either of them 4. This conclusion is also confirmed by the comparison with 
the much more reasonable valence values for the 4-31G basis, which is double 
zeta type in the valence shell, as were obtained in [5] by using the formula Eq. 
(11) correctly taking into account the overlap effects. 
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